1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
| import numpy as np from tqdm import tqdm import csv import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg')
input_dim = 768 hidden1 = 256 hidden2 = 128 hidden3 = 128 output_dim = 1 lr = 0.001 epochs = 20 batch_size = 128
X_train_cat = np.load(r'D:\moshishibie\transformer\fangangnb\train_cat_features.npy') X_train_dog = np.load(r'D:\moshishibie\transformer\fangangnb\train_dog_features.npy') X_test_cat = np.load(r'D:\moshishibie\transformer\fangangnb\test_cat_features.npy') X_test_dog = np.load(r'D:\moshishibie\transformer\fangangnb\test_dog_features.npy')
X_train = np.vstack([X_train_cat, X_train_dog]) y_train = np.array([0]*1000 + [1]*1000).reshape(-1, 1)
X_test = np.vstack([X_test_cat, X_test_dog]) y_test = np.array([0]*1000 + [1]*1000).reshape(-1, 1)
perm = np.random.permutation(len(X_train)) X_train = X_train[perm] y_train = y_train[perm]
def init_weights(): W1 = np.random.randn(input_dim, hidden1) * np.sqrt(2. / input_dim) b1 = np.zeros((1, hidden1)) W2 = np.random.randn(hidden1, hidden2) * np.sqrt(2. / hidden1) b2 = np.zeros((1, hidden2)) W3 = np.random.randn(hidden2, hidden3) * np.sqrt(2. / hidden2) b3 = np.zeros((1, hidden3)) W4 = np.random.randn(hidden3, output_dim) * np.sqrt(2. / hidden3) b4 = np.zeros((1, output_dim)) return W1, b1, W2, b2, W3, b3, W4, b4
def relu(x): return np.maximum(0, x)
def relu_derivative(x): return (x > 0).astype(float)
def sigmoid(x): return 1 / (1 + np.exp(-x))
def binary_cross_entropy(y_pred, y_true): eps = 1e-12 y_pred = np.clip(y_pred, eps, 1 - eps) return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
def forward(X, W1, b1, W2, b2, W3, b3, W4, b4): z1 = X @ W1 + b1 a1 = relu(z1) z2 = a1 @ W2 + b2 a2 = relu(z2) z3 = a2 @ W3 + b3 a3 = relu(z3) z4 = a3 @ W4 + b4 a4 = sigmoid(z4) return z1, a1, z2, a2, z3, a3, z4, a4
def backward(X, y, z1, a1, z2, a2, z3, a3, z4, a4, W2, W3, W4): m = y.shape[0] dz4 = a4 - y dW4 = a3.T @ dz4 / m db4 = np.sum(dz4, axis=0, keepdims=True) / m
da3 = dz4 @ W4.T dz3 = da3 * relu_derivative(z3) dW3 = a2.T @ dz3 / m db3 = np.sum(dz3, axis=0, keepdims=True) / m
da2 = dz3 @ W3.T dz2 = da2 * relu_derivative(z2) dW2 = a1.T @ dz2 / m db2 = np.sum(dz2, axis=0, keepdims=True) / m
da1 = dz2 @ W2.T dz1 = da1 * relu_derivative(z1) dW1 = X.T @ dz1 / m db1 = np.sum(dz1, axis=0, keepdims=True) / m
return dW1, db1, dW2, db2, dW3, db3, dW4, db4
def train(X, y, W1, b1, W2, b2, W3, b3, W4, b4): loss_list = [] acc_list = [] for epoch in range(epochs): epoch_loss = 0 correct = 0 total = 0 pbar = tqdm(range(0, len(X), batch_size), desc=f"Epoch {epoch+1}/{epochs}") for i in pbar: X_batch = X[i:i+batch_size] y_batch = y[i:i+batch_size]
z1, a1, z2, a2, z3, a3, z4, a4 = forward(X_batch, W1, b1, W2, b2, W3, b3, W4, b4) loss = binary_cross_entropy(a4, y_batch) epoch_loss += loss * len(X_batch)
pred = (a4 > 0.5).astype(int) correct += np.sum(pred == y_batch) total += len(X_batch)
grads = backward(X_batch, y_batch, z1, a1, z2, a2, z3, a3, z4, a4, W2, W3, W4) dW1, db1, dW2, db2, dW3, db3, dW4, db4 = grads
W1 -= lr * dW1 b1 -= lr * db1 W2 -= lr * dW2 b2 -= lr * db2 W3 -= lr * dW3 b3 -= lr * db3 W4 -= lr * dW4 b4 -= lr * db4
pbar.set_postfix(loss=loss) avg_loss = epoch_loss / total acc = correct / total loss_list.append(avg_loss) acc_list.append(acc) print(f"Epoch {epoch+1}: avg_loss={avg_loss:.4f}, acc={acc:.4f}") return W1, b1, W2, b2, W3, b3, W4, b4, loss_list, acc_list
def predict(X, W1, b1, W2, b2, W3, b3, W4, b4): preds = [] pbar = tqdm(range(0, len(X), batch_size), desc="Predicting") for i in pbar: X_batch = X[i:i+batch_size] _, _, _, _, _, _, _, a4 = forward(X_batch, W1, b1, W2, b2, W3, b3, W4, b4) preds.append(a4) preds = np.vstack(preds) return (preds > 0.5).astype(int), preds
W1, b1, W2, b2, W3, b3, W4, b4 = init_weights() W1, b1, W2, b2, W3, b3, W4, b4, loss_list, acc_list = train(X_train, y_train, W1, b1, W2, b2, W3, b3, W4, b4)
plt.figure(figsize=(10, 4)) plt.subplot(1, 2, 1) plt.plot(loss_list, label='Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.title('Training Loss') plt.grid(True) plt.legend()
plt.subplot(1, 2, 2) plt.plot(acc_list, label='Accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.title('Training Accuracy') plt.grid(True) plt.legend()
plt.tight_layout() plt.savefig('training_curve.png')
pred_labels, pred_probs = predict(X_test, W1, b1, W2, b2, W3, b3, W4, b4)
accuracy = np.mean(pred_labels == y_test) print(f"✅ Test Accuracy: {accuracy * 100:.2f}%")
with open('prediction_results.csv', 'w', newline='') as f: writer = csv.writer(f) writer.writerow(['id', 'true_label', 'predicted_label', 'probability']) for i, (true, pred, prob) in enumerate(zip(y_test, pred_labels, pred_probs)): writer.writerow([i, int(true[0]), int(pred[0]), float(prob[0])])
print("✅ Prediction results saved to prediction_results.csv")
|